
Developing an Ontological Sandbox:

Investigating Multi-Level Modelling’s Possible Metaphysical

Structures

Chris Partridge1,2 [0000-0003-2631-1627], Sergio de Cesare1 [0000-0002-2559-0567], Andrew Mitch-

ell2 [0000-0001-9131-722X], Frederik Gailly3 [0000-0003-0481-9745], Mesbah Khan4 [0000-0002-1327-6263]

1 University of Westminster, 2 BORO Solutions Ltd., 3 Faculty of Economics and

Business Administration, Ghent University, 4 Tullow Oil plc.

Abstract. One of the central concerns of the multi-level modelling (MLM) com-

munity is the hierarchy of classifications that appear in conceptual models; what

these are, how they are linked and how they should be organised into levels and

modelled [1]. Though there has been significant work done in this area, we be-

lieve that it could be enhanced by introducing a systematic way to investigate the

ontological nature and requirements that underlie the frameworks and tools pro-

posed by the community to support MLM (such as Orthogonal Classification Ar-

chitecture and Melanee). In this paper, we introduce a key component for the

investigation and understanding of the ontological requirements, an ontological

sandbox. This is a conceptual framework for investigating and comparing multi-

ple variations of possible ontologies – without having to commit to any of them

– isolated from a full commitment to any foundational ontology. We discuss the

sandbox framework as well as walking through an example of how it can be used

to investigate a simple ontology. The example, despite its simplicity, illustrates

how the constructional approach can help to expose and explain the metaphysical

structures used in ontologies, and so reveal the underlying nature of MLM level-

ling.

Keywords: Ontological Sandbox · Constructional Ontology · Ontological

Space · Ontogenesis · Multi-Level Modelling · Generalisation · Classification

1 Introduction

One of the central concerns of the multi-level modelling (MLM) community is the

hierarchy of classifications that appear in conceptual models; what these are, how they

are linked and how they should be organised into levels and modelled [1]. It has been

recognized that these levels are sometimes ontological [2] and, where they are, that this

introduces constraints, such as anti-cyclicity. There have also been attempts to charac-

terise classification and how it differs from generalisation [3–5] that include consider-

ation of their different ontological natures. Though there has been significant work done

in this area, we believe that it could be enhanced by introducing a systematic way to

2

investigate the ontological nature and requirements that underlie the levels and so in-

form the frameworks and tools proposed by the community to support MLM (such as

Orthogonal Classification Architecture and Melanee).

In the long term, we aim to provide support for the investigation and understanding

of the ontological requirements and so guide the design of ontologies including those

used in MLM frameworks and tools. In this paper, we introduce a key component of

this, an ontological sandbox. This is a conceptual framework for investigating and com-

paring multiple variations of possible ontologies – without having to commit to any of

them – isolated from a full commitment to any foundational ontology. The sandbox

helps to expose and explain the metaphysical structures of the candidate ontologies, the

differences between them as well as suggesting potential alternatives. This makes it

useful for assessing different architectural choices.

Here we aim to provide a sketch of the sandbox based upon a constructional ap-

proach outlined in [6, 7]. We discuss the sandbox framework as well as walking through

an example of how it can be used to investigate a simple ontology. The example, despite

its simplicity, illustrates how the constructional approach can help to expose and ex-

plain the metaphysical structures found in ontologies, and so reveal the underlying na-

ture of MLM levelling. It illustrates how metaphysical choices [8] guide the construc-

tion of the ontology and how understanding the way metaphysical structures can vary

helps to guide the investigation of possible ontologies.

We look at how to use these metaphysical structures to derive, and so help to explain

the kinds of levelled structures frequently found in conceptual modelling; including

taxonomic structures such as the Linnaean hierarchy and component breakdowns com-

mon in engineering. This reveals a common underlying foundation for the levelled

structures that suggests there may be a wider application for MLM techniques.

We look at the MLM structures themselves. We use the example as a foundation for

characterising the family of formal structures associated with MLM classification and

generalisation. We show how understanding the way they are derived from fundamen-

tal structures helps to explain what they are and how different derivations give rise to

the variety of members of the family.

2 The Sandbox’s Underlying Framework

The sandbox adopts the algebraic constructional ontological framework outlined by

Fine in [6] and further developed, with a focus on wholes and parts, in [7]. Fine sees

the advantage of his framework is that it naturally reveals the underlying metaphysical

structure of reality. As an example, he comments on levels: “there is an intuitive dis-

tinction between wholes which are like sets in being hierarchically organised and those

which are like sums in being ‘flat’, or without an internal division into levels. The dis-

tinction, under the operational approach, can be seen to turn on whether repeated appli-

cations of the operation are capable of yielding something new.” [7, p. 566]. (One can

see the same flat/hierarchy distinction made in the literature between generalisation and

classification – a topic we return to below.) In the same paper, he talks about its power

and beauty; its ability to provide a single and elegant account of a variety of structures.

3

One cannot see this in the logical characterisation to these hierarchies, such as [9]. This

makes it a better tool for the task of investigating the metaphysical structure of possible

ontologies as well as the ontological content of MLM’s levels.

Here we outline, with some minor clarifications, the relevant portion of Fine’s

framework. This is not intended to be a detailed exposition; this can be found in Fine’s

papers. We broadly follow Fine’s notation, with some amendments to make this short

exposition clearer. We divide the outline into two sections; the first dealing with the

general ontological framework and the second with the general composition frame-

work.

2.1 Finean General Ontological Framework

Fine’s general framework has two theories; a core theory about ontologies and an

extended theory for ontological spaces containing ontologies.

Fine’s core theory deals with constructional ontologies. (From now on we will feel

free to drop the qualification ‘constructional’ from ontology – as all ontologies dis-

cussed here will be constructional in the Finean sense.) In these ontologies, objects are

accepted into the ontology on the grounds that they are constructed from elements al-

ready in the ontology; where a constructor is applied to the constructees to produce

constructs. An ontology can also contain given or basic elements that are just accepted.

Hence an ontology can be divided into three domains (see table below).

Table 1. Ontology domains (See [6])

Acronym Domain Names for Members

B basis domain bases, givens, basic elements or given elements
C constructor domain constructors
E constructed domain constructs or constructed elements

The basis and constructed domains combine to form a domain whose members are

called elements. All three domains combine to form the ontology’s universe, whose

members are called items.

The core theory uses ontological principles to show that one can generate all the

constructed elements (the constructed domain) from the basis and the constructor do-

mains. As Fine notes, this means we do not need to use the constructed domain, E, to

characterise an ontology, we can just use the couple < B, C>; E can then be generated

from B and C. Though the order of analysis may well be the opposite; where one starts

with the elements and works out what the constructors are and so the bases.

This generation of E relies upon an exhaustive application of the constructors; where

anything that can be generated is generated. In our approach, we find it useful to ‘con-

struct’ this process. We call this the ontology’s ONTOGENESIS and characterise the

ontology as the couple < B, C > plus ONTOGENESIS; so, in a sense, ONTOGENESIS

stands in for E.

Fine’s extended theory is about how ontologies fit into an ontological space; where

this is a nonempty collection of ontologies that conforms to certain principles. It shows

how, given ontologies in a space, similar ontologies with permutations of basis and

constructor domains also exist in the space. We extend this to permutations of the indi-

vidual constructors in the domain.

4

This provides a framework for an incremental sandbox approach to explaining and

understanding an ontology. If one wishes to understand an ontology (the target), these

principles allow one to initially pick out from the ontological space ontologies that con-

tain just the basis domain or just a single constructor from the target ontology and ex-

amine these. One can then pick and examine richer combinations, seeing how these

lead to richer structures, until one arrives at the target ontology.

2.2 Finean General Composition Framework

Using this general ontological framework, in [7] Fine sketches a general unified

framework for composition; the ways in which one object can be a part of another.

It is distinctive in several ways (all of which suit our current purpose). It takes a very

liberal notion of part that encompasses both traditional mereological relations as well

as others, such as set-membership, that are not usually thought of as whole-part rela-

tions; in other words, for Fine set-membership in another kind of whole-part. (The term

mereological whole-part will be reserved for the traditional mereological relations.)

The formulation of the framework takes the operation of composition (and decomposi-

tion) as primitive rather than the more familiar relation of whole-part. These primitive

operations are then treated as constructors within the general ontological framework;

where each fundamental constructor generates a different kind of whole-part. As noted

in Bennett [10], one key choice is the direction of generation for these composition

constructors; whether parts generate wholes or the other way around. Standard mereol-

ogy and cumulative set theory generate wholes from parts. Bennett offers Schaffer [11]

as an example of choosing the other direction.

Fine formulates his framework in terms of compositional principles; which act like

axioms. His first broad division is formal and material. Formal principles can be further

divided into those that deal with conditions of application and those that provide iden-

tity conditions. Material principles provide, for example, conditions for the presence of

a whole or part in space and time or at a world.

Fine develops an very simple way of characterising the formal identity principles for

summative identity (identity for the mereological sum operation) based upon a notion

of regular identity conditions (the reader can find the details in [7]). The result is the

four CLAP principles in Table 2, so-called because of their initials:

Table 2. CLAP (formal identity) principles (See [7])

C Col-
lapse

∑(x) = x If Collapse holds then any whole composed of
a single part is identical to it.

L Level-

ling

∑(… ,∑(x, y, z,...),… ,∑(u, v,

w,...),...) = ∑(… , x, y, z,… ,… , u, v,

w,… , ...)

If Levelling holds then when the parts of whole

have parts, these parts’ parts are also parts of

the whole.

A Absorp-

tion

∑(… , x, x, … , … , y, y, … , … ,) =

∑(… , x, … , y, ...)

If Absorption holds then the repetition of parts

is irrelevant to the identity of the whole.

P Permu-

tation

∑(x, y, z, ...) = ∑(y, z, x, ...) (and sim-

ilarly for all other permutations)

If Permutation hold then the order of the parts

is irrelevant to the identity of the whole.

A constructor’s formal identity can be characterised by whether these principles or

the counter-principles hold for it – one can summarise this into a CLAP profile, with a

mnemonic where the appropriate letter is struck through when the counter-principle

5

holds. Its application is also characterised by its direction of generation. Table 3 gives

examples of constructors for each CLAP profile and direction.

Table 3. Some possible forms of composition (See [7])

Profile Whole Example Parts-to-Wholes
Constructor

Example Wholes-to-Parts
Constructor

CLAP Sums SUM-BUILDER SUM-DECOMPOSER

CLAP Sets SET-BUILDER SET-DECOMPOSER
CLAP Strings STRING-BUILDER STRING-DECOMPOSER

CLAP Sequences SEQUENCE-BUILDER SEQUENCE-DECOMPOSER

The composition constructors construct elements – the constructed elements. They

also map out the composition structure; how wholes are related to parts and by which

kind of whole-part. However, not every application of a constructor constructs new

elements; some of these non-generational constructions map new composition structure

(others neither construct new elements or new mappings). Sum provides us with a good

example of this. If we start with a molecule abc of three atoms as the only given, then

a single sum-decomposition into all its parts will construct new elements; a, b, c as well

as the molecules ab, ac, and bc. It also give us the composition mapping for abc; the

relations between abc and all its parts. If we apply sum-decomposition to ab we get a

and b – but these are not new, they are in a sense re-constructed as they were newly

constructed in the first decomposition. However, it gives us a new composition map-

ping for ab, something that was not given in the first decomposition. It also shows, in

some sense, ab is prior to a and b. To capture these characteristics, we call the initial

types of construction generative. The second decomposition does some work, as it

shows that that ab is composed of a and b, so we call this type of construction compo-

sitional. Earlier we introduced the process ONTOGENESIS, which exhausts the ontol-

ogy’s generative power. However, as the example shows, this may not exhaust the com-

positional power. To do this we extend ONTOGENESIS to cover all the possible com-

positional relations, and call this ONTOGENESIS+. This is needed to extract the full

power of the constructors.

Generative Hierarchies. The generative power of constructors provides a way of or-

ganising elements into levels within hierarchies. Every constructed element is con-

structed by a sequence of generative constructions. This provides a simple way to or-

ganise them into a hierarchy: each level is characterised by the number of times the

constructor has been applied. The additional compositional constructions are not con-

sidered here.

One can also see this as a form of ONTOGENESIS, where one is given a START

collection and a constructor, and elements are constructed by repeatedly applying the

constructor. One needs to be clear what the constructor is being repeatedly applied to.

For this it is useful to introduce the notion of stage and to help define it the notion of

generation. A generation is all the (new) elements generated at a level–this excludes

cases where the element is re-constructed. And a stage is all the elements in a level’s

generation and all the prior levels’ generations. Then a stage level hierarchy is gener-

ated by repeatedly applying the constructor to stages.

6

We can make the process a little more formal; we need to account for the cases where

the START collection has multiple elements and there are multiple ways to choose the

collections to which the constructor is applied. For this we define an operation POWER

that takes a collection and selects all the possible sub-collections from this (in our ex-

ample, we do not need to take account of sensitivity to duplications and permutations).

In the case of sets, there is a connection with the set-theoretic powerset axiom. Then,

given a constructor, one can create a stage level hierarchy in steps (using constructor

and start variables) – where any element that can possibly be generated from the con-

structor will be generated at some level - as follows:
Generation 0: start

Generation 1: constructor (POWER (Stage 0))

…
Generation N+1: constructor (POWER (Stage N))

where N is unbounded and the constructor variable ranges over all the constructors

(this is needed where there is more than one constructor). For this example, we do not

need to consider actual infinite or transfinite recursion. Note that this hierarchy is mixed

in the sense that its component parts can be from multiple levels.

There is a variant hierarchy based upon generations rather than stages - a generation

level hierarchy. This is of interest because the multi-level hierarchies considered in

some multi-level modelling seem to be of this type – see, for example, the ‘level re-

specting’ principle in [12] and the discussion of strict metamodelling in [13]. We look

at this in Section 4.

A generation level hierarchy is one where the next level is generated by applying the

constructor to the previous level’s generation. Each step of the generation level hierar-

chy only considers the preceding level’s generation and so ignores any earlier levels.

This means it does not use the full generative power of the constructor. We can formal-

ise this by replacing stage with generation in the earlier process as follows:
Generation N+1: constructor (POWER (Generation N))

Note that this hierarchy is pure (that is, unmixed) in the sense that its component

parts at each level are from a single level.

2.3 Framework Clarifications

There are a few points that we clarify as scene-setting for the sandbox example;

kinds and unique decomposition.

Constructed elements are linked to the constructor that constructs them; this can

form the basis for kinds. SET-BUILDER is a good example. An element is of the kind

set if and only if it is constructed by SET-BUILDER. One can also base kinds of whole-

parts upon the constructor from which they emerge – so set membership is the kind of

whole-part that emerges from SET-BUILDER; relating the (whole–set) constructs with

the (parts–members) constructees. Kinds are useful in defining the application scope of

the constructor operations; for example, SUM-BUILDER does not apply to elements

of the kind set – nor does it construct elements of this kind.

In the case of sets, strings and sequences, there is a unique collection of parts that

compose the wholes – the principles merely regulate the permutations and duplicates

of the parts and the levelling of the constructors. In standard mereology, which is based

upon the mereological whole-part relation, sums work in a different way. There are

7

multiple ways in which a whole can be a sum of its parts. Our framework starts with

composition (and de-composition) rather than whole-part and this provides us with a

way to ensure a unique decomposition. One can decompose a sum uniquely into a col-

lection of parts. A good illustration of how this would work is a universe of mereolog-

ical atoms. All the wholes that are sums of mereological atoms would be the sum of a

unique collection of these atoms. If one did not want to assume mereological atoms,

one can take the decomposition to be all the parts. We adopt this latter approach for the

example.

3 Analysing a SIMPLE Sandbox Example

We now describe a simple example ontology, called (unsurprisingly) SIMPLE. The

SIMPLE ontology is intended to illustrate how our approach is useful in explaining the

formal requirements for metaphysical structures in models. Given this goal, we aim to

make the example as simple as possible while still being able to illustrate how the struc-

tural whole-part patterns emerge, with a focus on the hierarchies and levels (such as

generation and stage level hierarchies) within the patterns.

3.1 Building Up the SIMPLE Ontology

As noted earlier, in the Finean ontology framework, we can characterise an ontology

in terms of its basis and constructor domains, which we now do. Our full example on-

tology, called SIMPLE, has a non-empty basis domain and a constructor domain con-

taining two constructors (SET-BUILDER and SUM-DECOMPOSER).

Under our approach, based upon the Finean Extended Theory, we construct an on-

tological space with ontologies that take us in small incremental steps from the NULL

ontology to the final SIMPLE ontology. This is essentially all the permutations of basis

domain and individual constructors (as the table below shows). Some of the permuta-

tions are not illuminating, so are not visited in the analysis – these are marked in the

table.

Table 4. SIMPLE’s analysis ontological space

O
n

to
lo

gy

A
cro

n
ym

B
asis D

o
m

ain

SET-B
U

ILD
ER

SU
M

-

D
EC

O
M

P
O

SER

In
clu

d
e

s

A
n

alyse
d

NULL NULL NO NO NO None NO
Simple Basis only SB YES NO NO NULL YES

SET-BUILDER only SET NO YES NO NULL YES
SUM-DECOMPOSER only SUM NO NO YES NULL NO

SET-BUILDER and SUM-DECOMPOSER SET+SUM NO YES YES SET, SUM NO
Simple Basis plus SET-BUILDER SB+SET YES YES NO SB, SET NO

Simple Basis plus SUM-DECOMPOSER SB+SUM YES NO YES SB, SUM YES

8

SIMPLE SIMPLE YES YES YES SB+SET,
SB+SUM,
SET+SUM

YES

One could regard the other ontologies as partial versions of the SIMPLE ontology,

or subontologies of it. We start the analysis with the Simple Basis Only (Sub-)Ontol-

ogy.

Simple Basis Only (SB) Ontology. From a metaphysical viewpoint, the choice of ba-

ses typically involves important architectural commitments [8]. There are a variety of

options. One could start with a basis domain of mereological atoms [14] and build up

the ontology from them. Or one could adopt priority monism [11], then the given will

be everything (which may be a single actual or an infinity of possible worlds) and the

ontology is built by decomposing this. Choosing one of these would then dictate the

direction of the intended SUM constructor; whether to start with mereological parts and

construct wholes – or vice versa, start with a mereological whole and construct the

parts.

To keep things simple, we follow the priority monism route and have a basis domain

consisting of a single object – a pluriverse of possible worlds [15], which we will ab-

breviate as PV. Again, to keep things simple, we adopt super-substantivalism [16],

which [17] calls monistic substantivalism; this considers matter to be identical to the

spacetime region is occupies.

We can now define the ontology as SB = < (PV), () >. As there are no constructors

in this ontology then ONTOGENESIS is the NULL process – and PV is the only ele-

ment (and item) in the ontology. From a hierarchy perspective, this is a limit case. There

is a single object which can be regarded (pathologically) as a stage level hierarchy.

SET-BUILDER Only (SET) Ontology. This ontology has an empty basis domain and

a single constructor SET-BUILDER, mentioned earlier, so SET = < (), (SET-

BUILDER) >. This constructor is introduced in [6] and described in detail in [7]. We

mentioned SET-BUILDER earlier in Table 4, noting it is formally a SET constructor

where the direction of generation is part to whole and its form of identity is CLAP; it

works as follows:

• It has the associated kind, sets. An element is a set if and only if it is constructed by

SET-BUILDER.

• It is presented with a collection (possibly empty) of elements (parts) and it constructs

a set (the whole).

• If presented with a collection of zero elements it generates the empty set, {}.

• Its CLAP profile means that if presented with non-zero collection of elements it gen-

erates the set of those elements, ignoring duplicates and order.

This provides us with sufficient resources to develop a good example of generation

and stage level hierarchies. Using the process schema defined earlier, we can create

SET’s generation level hierarchy in steps as follows:
Generation 0: ()

Generation 1: SET-BUILDER (POWER (Generation 0))

9

…

Generation N+1: SET-BUILDER (POWER (Generation N))

The first four levels’ generations and stages are shown below.

Table 5. SET-BUILDER generation level hierarchy

Level 0 1 2 3 4

Generation {} {{}} {{{}}} {{{{}}}}

Stage {} + {{}} + {} + {{{}}} + {{}} + {} + {{{{}}}} + {{{}}} + {{}} + {} +

This provides us with an example of the point made earlier, that the generation level

hierarchy is not necessarily the whole constructed domain as, at each level, the con-

structor is only applied to the previous generation. For example, at stage 2, the universe

contains both generation 1 and 2 elements, but SET-BUILDER is only applied to the

generation 2 elements.

Of course, we could take a related constructor GENERATION-SET-BUILDER

whose application is restricted to generation collections of elements, then the hierarchy

would cover the domain. However, we would then have to metaphysically justify the

choice of this constructor.

We can reinforce this incompleteness point by generating the corresponding stage

level hierarchy by replacing generation with stage as noted earlier, giving:
Generation N+1: SET-BUILDER (POWER (Stage N))

The first three levels are shown in the table below.

Table 6. SET-BUILDER stage level hierarchy

Level 0 1 2 3

Generation {} {{}} {{{}}}, {{}, {{}}}

Stage {} + {{}} + {} + {{{}}}, {{}, {{}}} + {{}} + {} +

The full process exhausts the generative power of the basis domain and constructors

and so; ONTOGENESIS (SET): SET-BUILDER Stage Level Hierarchy.

Every application of the SET-BUILDER is generative, so there is no difference be-

tween ONTOGENESIS (SET) and ONTOGENESIS+ (SET).

Simple Basis plus SUM-DECOMPOSER (SB+SUM) Ontology. This ontology is an

extension of the Simple Basis Only Ontology with the SUM-DECOMPOSER construc-

tor, so; SB+SUM = < (PV), (SUM-DECOMPOSER) >. We see from Table 4, that

SUM-DECOMPOSER is a SUM constructor where the direction of generation is whole

to part and its form of identity is CLAP. It works as follows:

• It has the associated kind, material elements. PV is a material element, all the ele-

ments constructed by SUM-DECOMPOSER are also material elements and these

are the only material elements.

• It is presented with a single material element (the whole) and it constructs a collec-

tion of material elements (parts).

• Its CLAP profile means that it generates a collection of elements with no duplicates

or order.

10

The choice of this constructor naturally complements the choice of PV as a basis.

Given the super-substantival choice for PV, SUM-DECOMPOSER takes a material

element and uniquely decomposes it into all its material, spatiotemporal parts. One can

see the constructor as establishing the parts of which the whole is composed.

This ontology has a simple two level hierarchy, with PV as generation 0 and all its

parts as generation 1. And only one application of the constructor gives all the con-

structed elements; the parts of the whole PV. So: ONTOGENESIS (SB+SUM): SUM-

DECOMPOSER (PV). ONTOGENESIS+ (SB+SUM) needs to consider these parts as

wholes and establish their parts, and this is achieved by applying sum-decomposer to

each of them. We specify this process using an iterative FOR EACH component process

– as follows:
Generation 0: (PV)

Generation 1: SUM-DECOMPOSER (PV)

Generation 2: FOR EACH X in Generation 1 (SUM-DECOMPOSER (X))

The two generations exhaust the compositional power of the constructor.

The SIMPLE Ontology. This ontology is Simple Basis plus SET-BUILDER and

SUM-DECOMPOSER, so SIMPLE = < (PV), (SET-BUILDER, SUM-

DECOMPOSER) >. It is a combination of all of the earlier ontologies, where the basis

domain and constructors were defined and much of the analysis done.

This is the first ontology with multiple constructors. For the single constructor situ-

ations, we had two simple levelling schemes based upon the number of applications of

the constructor; we combine these for multiple constructors to give us

ONTOGENESIS, as follows:
Generation 0: (PV)

Generation 1: SUM-DECOMPOSER (PV) + SET-BUILDER (POWER (PV))

Generation 2: SET-BUILDER (POWER (Stage 1))
…

Generation N+1: SET-BUILDER (POWER (Stage N))

And we build ONTOGENESIS+ (the full composition map) in the same way as in

SB+SUM adding this to generation 2:
Generation 2+: FOR EACH X in Generation 1 (SUM-DECOMPOSER (X))

The ONTOGENESIS hierarchies do not have the same symmetry as the cumulative

set hierarchy. For example, the standard cumulative set hierarchy all the singleton sets

are at the same level (see SET above). However, as shown in the table below (where

p1, p2, … are the parts of PV), the combination of the two constructors produce, at

level 1, not only all the parts of PV but also the empty set and singleton PV – and

produces at level 2 singletons of the empty set and the parts of PV as well as singleton-

singleton PV.

 Table 7. Example multiple constructor hierarchy

Level 0 1 2

Generation PV {}, {PV}, p1, p2, … {{}}, {{PV}}, {p1}, {p2}, …

This suggests another way to construct hierarchies; by calculating the levels using a

single constructor. In this case, by only considering the generative applications of SET-

BUILDER– ignoring SUM-DECOMPOSER. This recaptures the symmetrical hierar-

chy.

11

4 Deriving Structures From SIMPLE

The example shows how fundamental multi-level hierarchies emerge from the pat-

tern of construction. However, this is not the only way that these hierarchies, multi-

level or otherwise, can emerge. The fundamental structures can be used to derive other

types of compositions and their associated hierarchies.

4.1 Deriving SIMPLE’s Subset Constructor

One of these derived types of composition is subset or set-inclusion. For our pur-

poses, it makes sense to do this using a derived constructor SUBSET-DECOMPOSER

(set) that works as follows:

• Its direction of generation is whole to parts.

• Its form of identity (like SUM-DECOMPOSER) is CLAP, which means that it gen-

erates a collection of elements with no duplicates or order.

• It is presented with a single set element (the whole) and it constructs a collection of

set elements (the subset parts) – hence it can only be applied to elements of kind set

and it constructs elements of the same kind.

Applying this constructor to a set will produce a collection of all its subsets. This

can be regarded as the initial stage in the set-theoretic power set axiom. To formalise

this, we specify the inverse of SET-BUILDER; SET-DECOMPOSER (set) which takes

a set and produces a collection of its members. Using this we can specify; SUBSET-

DECOMPOSER (set) = SET-BUILDER (POWER (SET-DECOMPOSER (set))). This,

when given a set takes its members and constructs sets from them, constructing all its

subsets. As with SUM-DECOMPOSER, one then needs to apply the same operation to

each of the parts to establish the full subset composition mapping, as shown below.
Generation 0: (set)
Generation 1: SUBSET-DECOMPOSER (set)

Generation 2: FOR EACH X in Generation 1 (SUBSET-DECOMPOSER (X))

One can begin to see the structural similarities between SUBSET-DECOMPOSER

and ordinary SUM-DECOMPOSER noted in [18]. For example, like the SUM-

DECOMPOSER constructor, the SUBSET-DECOMPOSER constructor is not levelled

(in CLAP terms) and so has a flat structure. However, one can also see, as [7] notes,

that in this space the first is fundamental and the other is derived.

4.2 Deriving SIMPLE Taxonomies and Component Breakdowns

One can derive a new hierarchy by subsumption from a whole-part hierarchy – and

this can be levelled in ways that the original hierarchy is not. Taxonomies, including

ones such as the Linnaean classification, and component breakdowns, in so far as they

are ontological, are good examples. The procedure is simple. One chooses a subset of

the elements and then a subset of their whole-part compositions so that the result con-

forms to the desired whole-part structure; if one wants a levelled structure, then one

ensures the structure conforms to the right CLAP principles – typically that it does not

adhere to levelling.

12

Consider (one version of) the Linnaean classification hierarchy that has ‘Natural

Things’ at the top and is divided and sub-divided through the levels until reaching ‘Felis

leo’ and ‘Felis tigris’ as the bottom. Within the SIMPLE example, ‘Natural Things’ is

a set of (spatiotemporally extended) material elements and the other classifications are

subsets of it [5]. This collection of classifications are the elements used in the hierarchy.

These can be derived using SUBSET-DECOMPOSER and a filter, FILTER-LC, that

given a collection selects those elements that are Linnaean classifications;

LINNAEAN-C: FILTER-LC (SUBSET-DECOMPOSER (Natural Things)).

Traditionally, the classification structure is levelled by taking a transitive reduction

of the underlying whole-part hierarchy. We can derive the LINNAEAN-SUBSET-

DECOMPOSER constructor for this by taking a constrained version of SUBSET-

DECOMPOSER that can only be applied to Linnaean classifications and when applied

only reruns the next level – other levels are filtered out. This gives us a natural genera-

tion level hierarchy LC, which is defined as having ‘Natural Things’ as its base and

LINNAEAN-SUBSET-DECOMPOSER as its sole constructor – and;
Generation 0: (Natural Things)

Generation 1: LINNAEAN-SUBSET-DECOMPOSER (Natural Things)

Generation 2: FOR EACH X in Generation 1 (LINNAEAN-SUBSET-DECOMPOSER (X))

…

Generation N+1: FOR EACH X in Generation N (LINNAEAN-SUBSET-DECOMPOSER (X)),

Of course, the classification structure is richer; which means more constructors are

needed. For example, the levels (e.g. Kingdoms) are explicit as ranks (this is described

in [5]), so a RANKER constructor is required. However, this skeleton outline should

be sufficient to indicate how this could be done.

The same derivation process can be used on other kinds of whole-parts. Component

breakdown structures (such as car X breaks down into body and engine components

and engine into so on) would be based upon mereological whole-part and SUM-

DECOMPOSER [19].

This ability to derive levelled hierarchies from the fundamental structures not only

helps to explain (ontologically) what these hierarchies are but also suggests there may

be new areas for MLM tools to be deployed.

4.3 Deriving MLM Generalisation and Classification Hierarchies

Analyses of classification and generalisation have noted the similarities with, respec-

tively, set-membership and subset [3]. A common point made is that generalisation

(like subset) is transitive and does not have levels whereas classification (like set-mem-

bership) is anti-transitive and has levels [12]. As noted earlier, the sandbox analysis

both captures these formal structures and exposes the close relationship between the

two (when seen as compositions based upon constructors); that SUBSET-

DECOMPOSER is derived from the fundamental SET-BUILDER.

However, classification is not plain set-membership nor generalisation plain subset

– and the differences can guide us on how to build the appropriate derived constructors.

One key difference is that the conceptual models typically restrict their relations to a

sub-domain of interest. As with the taxonomies above, this can be captured by a filter

on the constructor – where the filter clearly delineates the scope of the domain.

13

In UML and MLM there are many varieties of generalisation. In some MLM con-

texts, the generalisation hierarchy is, like in taxonomies above, restricted to a transitive

reduction. This is also common in conceptual modelling contexts, where typically only

the transitive reduction is modelled, and the transitive closure is rarely if ever manda-

tory. In some contexts, the hierarchy is restricted to a tree-structure, whereas in others

it is more usual to allow lattice (multiple inheritance) hierarchies. Submitting these dif-

ferent structures to a sandbox analysis would capture their different commitments in

derived constructors (typically using filters) with their appropriate CLAP profile – as

well as their common underpinnings.

Similarly, there are varieties of classification. As noted earlier, [12] introduces the

property of ‘level respecting’ in a way that leads to a similar structure to generation

hierarchies. The appropriate constructor for this shape of structure, GENERATION-

SET-BUILDER, is similar to SET-BUILDER, but with a filter on what it applies to.

This analysis of the structures in terms of how they are derived from more fundamental

constructors helps to both formalise their differences as well highlighting them.

It also gives rise to natural enquires as the motivations for the choices; for example,

are they adopted for metaphysical/ontological or pragmatic reasons, and if so, what are

these reasons? So, for example, it makes clear that adopting a GENERATED-SET-

BUILDER (as strict metamodelling does) filters out mixed sets. One can ask what the

motivation for this is and whether the cost of excluding them is worthwhile.

5 Conclusions

We have provided an outline of the underlying framework upon which the ontolog-

ical sandbox is built and indicated where further details can be found [6, 7]. We have

used the example SIMPLE ontology to show how one can use this sandbox to build up

an understanding of the target ontology in steps through ontological space. We have

shown how the constructional approach exposes the underlying compositional meta-

physical structures of ontologies; for example, how, in the SIMPLE ontology at least,

the set-inclusion hierarchy is derived from the fundamental set-membership hierarchy’s

constructor. We have shown how understanding the CLAP principles of composition

can expose the architectural choices made and suggest alternatives. We have shown

how familiar hierarchical structures, such as taxonomies and component breakdowns,

can be derived from more fundamental structures. We have shown how the same tech-

niques can be applied to MLM classification and generalisation structures. We have

provided a clear picture of the trade-off between order and expressiveness that drives

the choice of strict metamodelling (effectively a generation level hierarchy) – as well

as an alternative – stage level hierarchy. Hopefully, this is sufficient to provide a good

idea of the potential for this sandbox to help us understand and improve the ontological

underpinnings of conceptual models.

This paper provides an outline of the ontology sandbox. A lot more work needs to

be done showing how it can be used. One area where we think it will be fruitful to

develop the approach is investigating the range of possible ontological commitments of

existing MLM frameworks and tools. This could not only suggest possible ontologies

14

(and so semantics) for the frameworks but also identify possible ontologically-driven

improvements.

References

1. Atkinson, C., Gerbig, R., Kühne, T.: Comparing multi-level modeling ap-

proaches. MULTI@ MoDELS. pp. 53–61 (2014).

2. Atkinson, C., Kühne, T.: Model-driven development: a metamodeling founda-

tion. Software, IEEE. 20, 36–41 (2003).

3. Frank, U.: Thoughts on classification/instantiation and generalisation/specialisa-

tion. (2012).

4. Kühne, T.: Contrasting classification with generalisation. Proceedings of the

Sixth Asia-Pacific Conference on Conceptual Modeling-Volume 96. pp. 71–78.

Australian Computer Society, Inc., Darlinghurst, Australia (2009).

5. Partridge, C., de Cesare, S., Mitchell, A., Odell, J.: Formalization of the classifi-

cation pattern: survey of classification modeling in information systems engi-

neering. Software & Systems Modeling. 1–37 (2016).

6. Fine, K.: The study of ontology. Noûs. 25, 263–294 (1991).

7. Fine, K.: Towards a theory of part. The Journal of Philosophy. 107, 559–589

(2010).

8. Partridge, C.: Note: A couple of meta-ontological choices for ontological archi-

tectures. LADSEB CNR, Padova, Italy. (2002).

9. Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.: Extending the

foundations of ontology-based conceptual modeling with a multi-level theory.

International Conference on Conceptual Modeling. pp. 119–133 (2015).

10. Bennett, K.: Construction area (no hard hat required). Philosophical Studies. 154,

79–104 (2011).

11. Schaffer, J.: Monism: The priority of the whole. Philosophical Review. 119, 31–

76 (2010).

12. Kühne, T.: Matters of (meta-) modeling. Software and Systems Modeling. 5,

369–385 (2006).

13. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Transac-

tions on Modeling and Computer Simulation (TOMACS). 12, 290–321 (2002).

14. Goodman, N.: On relations that generate. Philosophical Studies. 9, 65–66 (1958).

15. Lewis, D.: On the plurality of worlds. Blackwell, Oxford (1986)

16. Sklar, L.: Space, time, and spacetime. Univ of California Press (1977).

17. Schaffer, J.: On What Grounds What. In: David Manley; David J. Chalmers;

Ryan Wasserman (ed.) Metametaphysics: new essays on the foundations of on-

tology. pp. 347–383. Oxford University Press (2009).

18. Lewis, D.: Parts of classes. B. Blackwell (1991).

19. Sanfilippo, E.M., Masolo, C., Borgo, S., Porello, D.: Features and Components

in Product Models. FOIS. pp. 227–240 (2016).

